Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.303
Filtrar
1.
Protein Sci ; 33(6): e5002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723146

RESUMO

Bacteria that have acquired resistance to most antibiotics, particularly those causing nosocomial infections, create serious problems. Among these, the emergence of vancomycin-resistant enterococci was a tremendous shock, considering that vancomycin is the last resort for controlling methicillin-resistant Staphylococcus aureus. Therefore, there is an urgent need to develop an inhibitor of VanX, a protein involved in vancomycin resistance. Although the crystal structure of VanX has been resolved, its asymmetric unit contains six molecules aligned in a row. We have developed a structural model of VanX as a stable dimer in solution, primarily utilizing nuclear magnetic resonance (NMR) residual dipolar coupling. Despite the 46 kDa molecular mass of the dimer, the analyses, which are typically not as straightforward as those of small proteins around 10 kDa, were successfully conducted. We assigned the main chain using an amino acid-selective unlabeling method. Because we found that the zinc ion-coordinating active sites in the dimer structure were situated in the opposite direction to the dimer interface, we generated an active monomer by replacing an amino acid at the dimer interface. The monomer consists of only 202 amino acids and is expected to be used in future studies to screen and improve inhibitors using NMR.


Assuntos
Proteínas de Bactérias , Multimerização Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Resistência a Vancomicina , Metaloendopeptidases/química , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Domínio Catalítico , D-Ala-D-Ala Carboxipeptidase Tipo Serina
2.
Mol Cancer Ther ; 23(5): 595-605, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530115

RESUMO

Methionine aminopeptidase type 2 (METAP2) is a ubiquitous, evolutionarily conserved metalloprotease fundamental to protein biosynthesis which catalyzes removal of the N-terminal methionine residue from nascent polypeptides. METAP2 is an attractive target for cancer therapeutics based upon its over-expression in multiple human cancers, the importance of METAP2-specific substrates whose biological activity may be altered following METAP2 inhibition, and additionally, that METAP2 was identified as the target for the anti-angiogenic natural product, fumagillin. Irreversible inhibition of METAP2 using fumagillin analogues has established the anti-angiogenic and anti-tumor characteristics of these derivatives; however, their full clinical potential has not been realized due to a combination of poor drug-like properties and dose-limiting central nervous system (CNS) toxicity. This report describes the physicochemical and pharmacological characterization of SDX-7320 (evexomostat), a polymer-drug conjugate of the novel METAP2 inhibitor (METAP2i) SDX-7539. In vitro binding, enzyme, and cell-based assays demonstrated that SDX-7539 is a potent and selective METAP2 inhibitor. In utilizing a high molecular weight, water-soluble polymer to conjugate the novel fumagillol-derived, cathepsin-released, METAP2i SDX-7539, limitations observed with prior generation, small molecule fumagillol derivatives were ameliorated including reduced CNS exposure of the METAP2i, and prolonged half-life enabling convenient administration. Multiple xenograft and syngeneic cancer models were utilized to demonstrate the anti-tumor and anti-metastatic profile of SDX-7320. Unlike polymer-drug conjugates in general, reductions in small molecule-equivalent efficacious doses following polymer conjugation were observed. SDX-7320 has completed a phase I clinical safety study in patients with late-stage cancer and is currently being evaluated in multiple phase Ib/II clinical studies in patients with advanced solid tumors.


Assuntos
Aminopeptidases , Antineoplásicos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Camundongos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Metionil Aminopeptidases/antagonistas & inibidores , Metaloendopeptidases/antagonistas & inibidores , Metástase Neoplásica , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Cicloexanos/farmacologia , Cicloexanos/química , Feminino , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proliferação de Células/efeitos dos fármacos
3.
Pharmacol Res ; 176: 106063, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999225

RESUMO

The proteases of the mitochondrial inner membrane are challenging yet highly desirable drug targets for complex, multifactorial diseases prevalent mainly in the elderly. Among them, OMA1 with its substrates OPA1 and DELE1 safeguards mitochondrial homeostasis at the intersection of energy metabolism and apoptosis, which may have relevance for neurodegeneration, malignancy and heart failure, among other diseases. Little is known about OMA1. Its structure has not been solved and we are just beginning to understand the enzyme's context-dependent regulation. OMA1 appears dormant under physiological conditions as judged by OPA1's processing pattern. The protease is rapidly activated, however, when cells experience stress or undergo apoptosis. Intriguingly, genetic OMA1 ablation can delay or even prevent apoptosis in animal models for diseases that can be broadly categorized as ischemia-reperfusion related disorders. Three groups have reported their efforts implementing OMA1 drug screens. This article reviews some of the technical challenges encountered in these assays and highlights what can be learned for future screening campaigns, and about the OMA1 protease more broadly. OMA1 does not exists in a vacuum and potent OMA1 inhibitors are needed to tease apart OMA1's intricate interactions with the other mitochondrial proteases and enzymes. Furthermore, OMA1 inhibitors hold the promise of becoming a new class of cytoprotective medicines for disorders influenced by dysfunctional mitochondria, such as heart failure or Alzheimer's Disease.


Assuntos
Metaloendopeptidases/antagonistas & inibidores , Animais , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Humanos , Metaloendopeptidases/metabolismo
4.
ACS Chem Biol ; 16(11): 2202-2211, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34672515

RESUMO

Mitochondrial proteases are interesting but challenging drug targets for multifactorial diseases, such as neurodegeneration and cancer. The mitochondrial inner membrane protease OMA1 is a bona fide drug target for heart failure supported by data from human linkage analysis and animal disease models, but presumably relevant for more indications. OMA1 acts at the intersection of energy metabolism and stress signaling. The protease cleaves the structural protein OPA1, which organizes the cristae, as well as the signaling peptide DELE1, which can stimulate the integrated stress response. OMA1 shows little activity under physiological conditions but hydrolyzes OPA1 in mitochondria destined for mitophagy and during apoptosis. Little is known about OMA1, its structure has not been solved, let alone its context-dependent regulation. Autocatalytic processing and the lack of OMA1 inhibitors are thereby creating the biggest roadblocks. This study introduces a scalable, cellular OMA1 protease assay suitable for high-throughput drug screening. The assay utilizes an engineered luciferase targeted to the inner membrane as artificial OMA1 substrate, whereby the reporter signal inversely correlates to OMA1 activity. Testing different screening protocols and sampling different compound collections validated the reporter and demonstrated that both OMA1 activators as well as OMA1 inhibitors can be identified with the assay. Ten kinase-targeted cancer drugs triggered OMA1 in the assays, which suggests─considering cardiotoxicity as a rather common side-effect of this class of drugs─cross-reactivity with the OMA1 pathway.


Assuntos
Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Metaloendopeptidases/metabolismo , Fosfotransferases/antagonistas & inibidores , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Inativação Gênica , Células HEK293 , Humanos , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/genética
5.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34618682

RESUMO

We used human monoclonal antibodies (humAbs) to study the mechanism of neuron intoxication by tetanus neurotoxin and to evaluate these antibodies as a safe preventive and therapeutic substitute for hyperimmune sera to treat tetanus in mice. By screening memory B cells from immune donors, we selected 2 tetanus neurotoxin-specific mAbs with exceptionally high neutralizing activities and extensively characterized them both structurally and functionally. We found that these antibodies interfered with the binding and translocation of the neurotoxin into neurons by interacting with 2 epitopes, whose identification pinpoints crucial events in the cellular pathogenesis of tetanus. Our observations explain the neutralization ability of these antibodies, which we found to be exceptionally potent in preventing experimental tetanus when injected into mice long before the toxin. Moreover, their Fab derivatives neutralized tetanus neurotoxin in post-exposure experiments, suggesting their potential for therapeutic use via intrathecal injection. As such, we believe these humAbs, as well as their Fab derivatives, meet the requirements to be considered for prophylactic and therapeutic use in human tetanus and are ready for clinical trials.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Metaloendopeptidases/antagonistas & inibidores , Toxina Tetânica/antagonistas & inibidores , Tétano/prevenção & controle , Adulto , Animais , Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/química , Metaloendopeptidases/química , Camundongos , Conformação Proteica , Ratos , Tétano/tratamento farmacológico , Toxina Tetânica/química
7.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073350

RESUMO

The astacin protease Meprin ß represents an emerging target for drug development due to its potential involvement in disorders such as acute and chronic kidney injury and fibrosis. Here, we elaborate on the structural basis of inhibition by a specific Meprin ß inhibitor. Our analysis of the crystal structure suggests different binding modes of the inhibitor to the active site. This flexibility is caused, at least in part, by movement of the C-terminal region of the protease domain (CTD). The CTD movement narrows the active site cleft upon inhibitor binding. Compared with other astacin proteases, among these the highly homologous isoenzyme Meprin α, differences in the subsites account for the unique selectivity of the inhibitor. Although the inhibitor shows substantial flexibility in orientation within the active site, the structural data as well as binding analyses, including molecular dynamics simulations, support a contribution of electrostatic interactions, presumably by arginine residues, to binding and specificity. Collectively, the results presented here and previously support an induced fit and substantial movement of the CTD upon ligand binding and, possibly, during catalysis. To the best of our knowledge, we here present the first structure of a Meprin ß holoenzyme containing a zinc ion and a specific inhibitor bound to the active site. The structural data will guide rational drug design and the discovery of highly potent Meprin inhibitors.


Assuntos
Ácidos Hidroxâmicos/química , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/química , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Humanos , Relação Estrutura-Atividade
8.
J Enzyme Inhib Med Chem ; 36(1): 819-830, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33757387

RESUMO

Compounds containg catechol or bisphosphonate were tested as inhibitors of the zinc metalloproteases, thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) which are bacterial virulence factors, and the human matrix metalloproteases MMP-9 and -14. Inhibition of virulence is a putative strategy in the development of antibacterial drugs, but the inhibitors should not interfere with human enzymes. Docking indicated that the inhibitors bound MMP-9 and MMP-14 with the phenyl, biphenyl, chlorophenyl, nitrophenyl or methoxyphenyl ringsystem in the S1'-subpocket, while these ringsystems entered the S2'- or S1 -subpockets or a region involving amino acids in the S1'- and S2'-subpockets of the bacterial enzymes. An arginine conserved among the bacterial enzymes seemed to hinder entrance deeply into the S1'-subpocket. Only the bisphosphonate containing compound RC2 bound stronger to PLN and TLN than to MMP-9 and MMP-14. Docking indicated that the reason was that the conserved arginine (R203 in TLN and R198 in PLN) interacts with phosphate groups of RC2.


Assuntos
Antibacterianos/farmacologia , Catecóis/farmacologia , Difosfonatos/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/enzimologia , Catecóis/síntese química , Catecóis/química , Difosfonatos/síntese química , Difosfonatos/química , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Metaloendopeptidases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Células THP-1
9.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782129

RESUMO

Meprin ß (Mß) is a multidomain type-I membrane metallopeptidase that sheds membrane-anchored substrates, releasing their soluble forms. Fetuin-B (FB) is its only known endogenous protein inhibitor. Herein, we analyzed the interaction between the ectodomain of Mß (MßΔC) and FB, which stabilizes the enzyme and inhibits it with subnanomolar affinity. The MßΔC:FB crystal structure reveals a ∼250-kDa, ∼160-Å polyglycosylated heterotetrameric particle with a remarkable glycan structure. Two FB moieties insert like wedges through a "CPDCP trunk" and two hairpins into the respective peptidase catalytic domains, blocking the catalytic zinc ions through an "aspartate switch" mechanism. Uniquely, the active site clefts are obstructed from subsites S4 to S10', but S1 and S1' are spared, which prevents cleavage. Modeling of full-length Mß reveals an EGF-like domain between MßΔC and the transmembrane segment that likely serves as a hinge to transit between membrane-distal and membrane-proximal conformations for inhibition and catalysis, respectively.


Assuntos
Fetuína-B/química , Metaloendopeptidases/química , Animais , Sítios de Ligação , Linhagem Celular , Fetuína-B/metabolismo , Humanos , Lepidópteros , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica
11.
ChemMedChem ; 16(6): 976-988, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33369214

RESUMO

Astacin metalloproteinases, in particular meprins α and ß, as well as ovastacin, are emerging drug targets. Drug-discovery efforts have led to the development of the first potent and selective inhibitors in the last few years. However, the most recent compounds are based on a highly flexible tertiary amine scaffold that could cause metabolic liabilities or decreased potency due to the entropic penalty upon binding to the target. Thus, the aim of this study was to discover novel conformationally constrained scaffolds as starting points for further inhibitor optimization. Shifting from flexible tertiary amines to rigid heteroaromatic cores resulted in a boost in inhibitory activity. Moreover, some compounds already exhibited higher activity against individual astacin proteinases compared to recently reported inhibitors and also a favorable off-target selectivity profile, thus qualifying them as very suitable chemical probes for target validation.


Assuntos
Aminas/farmacologia , Antineoplásicos/farmacologia , Descoberta de Drogas , Hidrocarbonetos Aromáticos/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Metaloproteases/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Aminas/síntese química , Aminas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrocarbonetos Aromáticos/síntese química , Hidrocarbonetos Aromáticos/química , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Bioorg Med Chem Lett ; 32: 127683, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33227414

RESUMO

The protozoan parasite Plasmodium falciparum causes the most severe form of human malaria and is estimated to kill 400,000 people a year. The parasite infects and replicates in host red blood cells (RBCs), where it expresses an array of proteases to carry out multiple essential processes. We are investigating the function of falcilysin (FLN), a protease known to be required for parasite development in the RBC. We previously developed a piperazine-based hydroxamic acid scaffold to generate the first inhibitors of FLN, and the current study reports the optimization of the lead compound from that series. A range of substituents were tested at the N1 and N4 positions of the piperazine core, and inhibitors with significantly improved potency against purified FLN and cultured P. falciparum were identified. Computational studies were also performed to understand the mode of binding for these compounds, and predicted a binding model consistent with the biochemical data and the distinctive SAR observed at both the N1 and N4 positions.


Assuntos
Antimaláricos/química , Ácidos Hidroxâmicos/química , Metaloendopeptidases/antagonistas & inibidores , Piperazina/química , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Sítios de Ligação , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Metaloendopeptidases/metabolismo , Simulação de Acoplamento Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
13.
Biochem Pharmacol ; 183: 114355, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279496

RESUMO

The therapeutic mechanism of action of methionine aminopeptidase 2 (MetAP2) inhibitors for obesity-diabetes has not yet been fully defined. Xenin, a K-cell derived peptide hormone, possesses an N-terminal Met amino acid residue. Thus, elevated xenin levels could represent a potential pharmacological mechanism of MetAP2 inhibitors, since long-acting xenin analogues have been shown to improve obesity-diabetes. The present study has assessed the ability of the MetAP2 inhibitor, TNP-470, to augment the antidiabetic utility of the incretin-enhancer drug, sitagliptin, in high fat fed (HFF) mice. TNP-470 (1 mg/kg) and sitagliptin (25 mg/kg) were administered once-daily alone, or in combination, to diabetic HFF mice (n = 10) for 18 days. Individual therapy with TNP-470 or sitagliptin resulted in numerous metabolic benefits including reduced blood glucose, increased circulating and pancreatic insulin and improved glucose tolerance, insulin sensitivity, pyruvate tolerance and overall pancreatic islet architecture. Further assessment of metabolic rate revealed that all treatments reduced respiratory exchange ratio and increased locomotor activity. All sitagliptin treated mice also exhibited increased energy expenditure. In addition, treatment with TNP-470 alone, or in combination with sitagliptin, reduced food intake and body weight, as well as elevating plasma and intestinal xenin. Importantly, combined sitagliptin and TNP-470 therapy was associated with further significant benefits beyond that observed by either treatment alone. This included more rapid restoration of normoglycaemia, superior glucose tolerance, increased circulating GIP concentrations and an enhanced pancreatic beta:alpha cell ratio. In conclusion, these data demonstrate that TNP-470 increases plasma and intestinal xenin levels, and augments the antidiabetic advantages of sitagliptin.


Assuntos
Aminopeptidases/antagonistas & inibidores , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/administração & dosagem , Metaloendopeptidases/antagonistas & inibidores , Neurotensina/biossíntese , O-(Cloroacetilcarbamoil)fumagilol/administração & dosagem , Fosfato de Sitagliptina/administração & dosagem , Aminopeptidases/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
14.
Bioorg Chem ; 104: 104183, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32971415

RESUMO

A selected series of racemic α-methylene-γ-butyrolactones (AMGBL) synthesized via allylboration or allylindation reactions were screened against methicillin-resistant Staphylococcus aureus (MRSA) USA300. Unlike natural AMGBLs, such as parthenolide, synthetic analogs bearing aryl moieties at the ß- and γ-positions are potent against MRSA. The most potent molecules were comparable to vancomycin and linezolid, the drugs of the last resort for MRSA infections, in their effectiveness with minimum inhibitory concentrations (MICs) ranging from 3.0 to 5.2 µM. These lactones also exhibited potent antibacterial activity against other clinically important multidrug-resistant Gram-positive bacteria (except enterococci), while also showing high tolerability to mammalian cells. Several of these molecules surpassed vancomycin in their rapid killing of the high MRSA inoculum (2 h vs 12 h) in a standard time-kill kinetics assay, with compounds 1l and 1m significantly reducing the intracellular burden of MRSA by about 98-99%, at low concentrations. Additionally, the compounds surpassed vancomycin in inhibiting staphylococcal protease production, indicating that synthetic methylene lactones warrant further investigations as promising anti-MRSA candidates.


Assuntos
4-Butirolactona/análogos & derivados , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , 4-Butirolactona/síntese química , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
15.
J Med Chem ; 63(15): 8359-8368, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32470298

RESUMO

In light of the global antimicrobial-resistance crisis, there is an urgent need for novel bacterial targets and antibiotics with novel modes of action. It has been shown that Pseudomonas aeruginosa elastase (LasB) and Clostridium histolyticum (Hathewaya histolytica) collagenase (ColH) play a significant role in the infection process and thereby represent promising antivirulence targets. Here, we report novel N-aryl-3-mercaptosuccinimide inhibitors that target both LasB and ColH, displaying potent activities in vitro and high selectivity for the bacterial over human metalloproteases. Additionally, the inhibitors demonstrate no signs of cytotoxicity against selected human cell lines and in a zebrafish embryo toxicity model. Furthermore, the most active ColH inhibitor shows a significant reduction of collagen degradation in an ex vivo pig-skin model.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium histolyticum/enzimologia , Colagenases/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloendopeptidases/metabolismo , Pseudomonas aeruginosa/enzimologia , Succinimidas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Linhagem Celular , Infecções por Clostridium/tratamento farmacológico , Clostridium histolyticum/efeitos dos fármacos , Humanos , Inibidores de Metaloproteinases de Matriz/química , Metaloendopeptidases/antagonistas & inibidores , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Succinimidas/química , Suínos , Peixe-Zebra
16.
Biophys Chem ; 261: 106368, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32272264

RESUMO

The zinc-metalloprotease pseudolysin (PLN) secreted from bacteria degrades extracellular proteins to produce bacterial nutrition. Since PLN has a Zn ion at the inhibitor-binding site, the interactions between Zn and PLN residues as well as inhibitor can be significantly changed depending on the protonation states of PLN residues at the inhibitor-binding site. To determine stable protonation states of these residues, we here considered different protonation states for Glu and His residues located around Zn and investigated the electronic states of the PLN + inhibitor complex, using ab initio molecular simulations. The protonation state of His223 was found to significantly affect the specific interactions between PLN and the inhibitor.


Assuntos
Aminoácidos/química , Proteínas de Bactérias/química , Teoria da Densidade Funcional , Inibidores Enzimáticos/química , Metaloendopeptidases/química , Simulação de Dinâmica Molecular , Aminoácidos/antagonistas & inibidores , Aminoácidos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Prótons
17.
Comput Biol Chem ; 86: 107244, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32252002

RESUMO

Methionine Aminopeptidases MetAPs are divalent-cofactor dependent enzymes that are responsible for the cleavage of the initiator Methionine from the nascent polypeptides. MetAPs are classified into two isoforms: namely, MetAP1 and MetAP2. Several studies have revealed that MetAP2 is upregulated in various cancers, and its inhibition has shown to suppress abnormal or excessive blood vessel formation and tumor growth in model organisms. Clinical studies show that the natural product fumagillin, and its analogs are potential inhibitors of MetAP2. However, due to their poor pharmacokinetic properties and neurotoxicities in clinical studies, their further developments have received a great setback. Here, we apply structure-based virtual screening and molecular dynamics methods to identify a new class of potential inhibitors for MetAP2. We screened Otava's Chemical Library, which consists of about 3 200 000 tangible-chemical compounds, and meticulously selected the top 10 of these compounds based on their inhibitory potentials against MetAP2. The top hit compounds subjected to ADMET predictor using 3 independent ADMET prediction programs, were found to be drug-like. To examine the stability of ligand binding mode, and efficacy, the unbound form of MetAP2, its complexes with fumagillin, spiroepoxytriazole, and the best promising compounds compound-3369841 and compound-3368818 were submitted to 100 ns molecular dynamics simulation. Like fumagillin, spiroepoxytriazole, and both compound-3369841 and compound-3368818 showed stable binding mode over time during the simulations. Taken together, these uninherited-fumagillin compounds may serve as new class of inhibitors or provide scaffolds for further optimization towards the design of more potent MetAP2 inhibitors -development of such inhibitors would be essential strategy against various cancer types.


Assuntos
Aminopeptidases/antagonistas & inibidores , Antineoplásicos/química , Metaloendopeptidases/antagonistas & inibidores , Antineoplásicos/farmacocinética , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Neoplasias/tratamento farmacológico
18.
Am J Physiol Endocrinol Metab ; 318(4): E514-E524, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31990576

RESUMO

We examined the methionine aminopeptidase 2 inhibitor fumagillin in dogs consuming a high-fat and -fructose diet (HFFD). In pilot studies (3 dogs that had consumed HFFD for 3 yr), 8 wk of daily treatment with fumagillin reduced food intake 29%, weight 6%, and the glycemic excursion during an oral glucose tolerance test (OGTT) 44%. A second group of dogs consumed the HFFD for 17 wk: pretreatment (weeks 0-4), treatment with fumagillin (FUM; n = 6), or no drug (Control, n = 8) (weeks 4-12), washout period (weeks 12-16), and fumagillin or no drug for 1 wk (week 17). OGTTs were performed at 0, 4, 11, and 16 wk. A hyperinsulinemic hyperglycemic clamp was performed in week 12; 4 chow-fed dogs underwent identical clamps. Kilocalories per day intake during the treatment period was 2,067 ± 50 (Control) versus 1,824 ± 202 (FUM). Body weights (kg) increased 1.9 ± 0.3 vs. 2.7 ± 0.8 (0-4 wk) and 1.2 ± 0.2 vs. -0.02 ± 0.9 (4-12 wk) in Control versus fumagillin. The OGTT glycemic response was 30% greater in Control versus fumagillin at 11 wk. Net hepatic glucose uptake (NHGU; mg·kg-1·min-1) in the Chow, Control, and fumagillin dogs was ~1.5 ± 0.6, -0.1 ± 0.1, and 0.3 ± 0.4 (with no portal glucose infusion) and 3.1 ± 0.6, 0.5 ± 0.3, and 1.5 ± 0.5 (portal glucose infusion at 4 mg·kg-1·min-1), respectively. Fumagillin improved glucose tolerance and NHGU in HFFD dogs, suggesting methionine aminopeptidase 2 (MetAP2) inhibitors have the potential for improving glycemic control in prediabetes and diabetes.


Assuntos
Aminopeptidases/antagonistas & inibidores , Cicloexanos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Insaturados/farmacologia , Frutose/efeitos adversos , Glucose/metabolismo , Glucose/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Dieta , Cães , Ingestão de Alimentos/efeitos dos fármacos , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Resistência à Insulina , Masculino , Sesquiterpenos/farmacologia
19.
J Neurochem ; 153(1): 120-137, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31486527

RESUMO

Previous studies documented up-regulation of peptidase neurolysin (Nln) after brain ischemia, however, the significance of Nln function in the post-stroke brain remained unknown. The aim of this study was to assess the functional role of Nln in the brain after ischemic stroke. Administration of a specific Nln inhibitor Agaricoglyceride A (AgaA) to mice after stroke in a middle cerebral artery occlusion model, dose-dependently aggravated injury measured by increased infarct and edema volumes, blood-brain barrier disruption, increased levels of interleukin 6 and monocyte chemoattractant protein-1, neurological and motor deficit 24 h after stroke. In this setting, AgaA resulted in inhibition of Nln in the ischemic hemisphere leading to increased levels of Nln substrates bradykinin, neurotensin, and substance P. AgaA lacked effects on several physiological parameters and appeared non-toxic to mice. In a reverse approach, we developed an adeno-associated viral vector (AAV2/5-CAG-Nln) to overexpress Nln in the mouse brain. Applicability of AAV2/5-CAG-Nln to transduce catalytically active Nln was confirmed in primary neurons and in vivo. Over-expression of Nln in the mouse brain was also accompanied by decreased levels of its substrates. Two weeks after in vivo transduction of Nln using the AAV vector, mice were subjected to middle cerebral artery occlusion and the same outcome measures were evaluated 72 h later. These experiments revealed that abundance of Nln in the brain protects animals from stroke. This study is the first to document functional significance of Nln in pathophysiology of stroke and provide evidence that Nln is an endogenous mechanism functioning to preserve the brain from ischemic injury.


Assuntos
Encéfalo/fisiopatologia , Metaloendopeptidases/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Edema , Regulação da Expressão Gênica , Glicerídeos/farmacologia , Infarto da Artéria Cerebral Média , Masculino , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/genética , Camundongos , Proteínas Recombinantes/efeitos dos fármacos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia , Transfecção
20.
Med Chem ; 16(6): 735-749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31203805

RESUMO

BACKGROUND: Prostate cancer is still one of the serious causes of mortality and morbidity in men. Despite recent advances in anticancer therapy, there is a still need of novel agents with more efficacy and specificity in the treatment of prostate cancer. Because of its function on angiogenesis and overexpression in the prostate cancer, methionine aminopeptidase-2 (MetAP-2) has been a potential target for novel drug design recently. OBJECTIVE: A novel series of Flurbiprofen derivatives N-(substituted)-2-(2-(2-fluoro-[1,1'- biphenyl]-4-il)propanoyl)hydrazinocarbothioamide (3a-c), 4-substituted-3-(1-(2-fluoro-[1,1'-biphenyl]- 4-yl)ethyl)-1H-1,2,4-triazole-5(4H)-thione (4a-d), 3-(substitutedthio)-4-(substituted-phenyl)- 5-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-4H-1,2,4-triazole (5a-y) were synthesized. The purpose of the research was to evaluate these derivatives against MetAP-2 in vitro and in silico to obtain novel specific and effective anticancer agents against prostate cancer. METHODS: The chemical structures and purities of the compounds were defined by spectral methods (1H-NMR, 13C-NMR, HR-MS and FT-IR) and elemental analysis. Anticancer activities of the compounds were evaluated in vitro by using MTS method against PC-3 and DU-143 (androgenindependent human prostate cancer cell lines) and LNCaP (androgen-sensitive human prostate adenocarcinoma) prostate cancer cell lines. Cisplatin was used as a positive sensitivity reference standard. RESULTS: Compounds 5b and 5u; 3c, 5b and 5y; 4d and 5o showed the most potent biological activity against PC3 cancer cell line (IC50= 27.1 µM, and 5.12 µM, respectively), DU-145 cancer cell line (IC50= 11.55 µM, 6.9 µM and 9.54 µM, respectively) and LNCaP cancer cell line (IC50= 11.45 µM and 26.91 µM, respectively). Some compounds were evaluated for their apoptotic caspases protein expression (EGFR/PI3K/AKT pathway) by Western blot analysis in androgen independent- PC3 cells. BAX, caspase 9, caspsase 3 and anti-apoptotic BcL-2 mRNA levels of some compounds were also investigated. In addition, molecular modeling studies of the compounds on MetAP-2 enzyme active site were evaluated in order to get insight into binding mode and energy. CONCLUSION: A series of Flurbiprofen-thioether derivatives were synthesized. This study presented that some of the synthesized compounds have remarkable anticancer and apoptotic activities against prostate cancer cells. Also, molecular modeling studies exhibited that there is a correlation between molecular modeling and anticancer activity results.


Assuntos
Aminopeptidases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Flurbiprofeno/análogos & derivados , Metaloendopeptidases/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Sulfetos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Flurbiprofeno/química , Flurbiprofeno/farmacologia , Humanos , Masculino , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA